Combining Multiple, Inexpensive GPS Receivers to Increase Accuracy and Reliability

DANIEL SCHRADER

Introduction

Current State of Consumer-Grade GPS

 GPS receivers have become small & inexpensive enough to be fairly ubiquitous

 Consumers can expect accuracy of about 10 meters, assuming no augmentation is used **

Significance of the Problem

- As our reliance on GPS continues to increase, our demand for accuracy and reliability increases, too
 - o GPS is seeing more and more applications
- Most users cannot afford (or even get access to) survey-grade or military-grade GPS equipment
 - Need restricted access to P-code receivers for military-grade
 - Need a big budget for survey-grade

Significance of the Problem

- Methods of improving GPS already exist
 - Such as DGPS, WAAS, IMUs
- Military/survey-grade equipment can cost \$25,000 or more *

- GPS (and therefore, traditional augmentation) struggles without a sky view
 - Method/algorithm that can use pseudolites, as well as GPS, has an important advantage

Significance of the Problem: Example

- Robots were used in rescue operations following the World Trade Center attacks *
 - Position sensors, such as IMUs and GPS receivers, were not used
 - Audio/video devices can easily become useless

Disorienting view when a rescue robot was flipped upside down in a void in the WTC rubble.

Significance of the Problem: Example

- Simply putting a "standard" GPS receiver on the robot would probably not be sufficient
 - Rescuers would only know the robot's location to within 10 m
 - Search area of about 314 square meters

A large (approximately 12 m deep) crater near WTC Tower 2. The white square marks the entrance to a small void (0.3 x 0.5 m) searched.

Methodology

CHAPTER 3

Diagram of test setup for proof-of-concept stage

Picture of test setup for proof-of-concept stage

• Process used for converting "raw" GPS coordinates into errors (distances from the reference point):

• This was done for each set of coordinates, then these results were simply averaged

Summary

- Hypothesis of using multiple receivers to improve accuracy appears valid
 - According to preliminary data
 - Some anomalies need investigation
- Moving forward, issues will likely arise when a more integrated system is developed
 - Power requirements of larger numbers of GPS receivers
 - Interference from surrounding electronics
 - Diminishing returns

Thank you!