

Self-orientation of Directional Antennas, Assisted by Mobile Robots, for Receiving the Best Wireless Signal Strength

Authors

Byung-Cheol Min, John Lewis, Danny Schrader, Eric Matson, Tony Smith

John Lewis February 7, 2012

Outline

- Introduction
- AWARE: Autonomous Wireless Agent Robotic Exchange
- Pattern Based Search Algorithm
 - Formulating Problems
 - Pattern Based Search Algorithm
- Experimental Setup and Results
 - Experimental Setup
 - Results
- Conclusions and Further Works

Introduction

- Wireless Sensor Networks (WSNs)
- Directional Wireless Networks (DWNs)
- WSN installment with robots

[5]

[3]

[4]

[3] N. Correll, J. Bachrach, D. Vickery, and D. Rus, "Ad-hoc wireless network coverage with networked robots that cannot localize," *in Proc. IEEE ICRA*, May 2009.
[4] Vijay Kumar, Daniela Rus, and Sanjiv Signh, "Robot and Sensor Networks for First Responders", *IEEE Pervasive Computing*, Vol.3, No. 4, pp. 24-33, 2004.
[5] Y Shibata, Y Sato, N Ogasawara, G Chiba, K Takahata, "A new ballooned wireless mesh network system for disaster use", *Proc. of AINA '09*, pp. 816–821,2009.

AWARE: Autonomous Wireless Agent Robotic Exchange

- In our previous work we showed autonomous, selforganizing wireless networks using multiple mobile robots with omni-directional antennas.
 - It provides the desired wireless coverage in the form of a mesh network.

[9] E. Matson, C. Nguyen, B. Leong, A. Smith, J. Wachs, "Integration of Agent Organization and Autonomous Robots to Enable Self-organizing Broadband Networks", International Conference on Control, Automation an Systems 2010 (ICCAS 2010), Gyeonggi-do, South Korea, October 27-30 2010.

AWARE: Autonomous Wireless Agent Robotic Exchange

- Using omni-directional antennas is not effective in covering a sufficient distance.
- We introduce the use of directional antennas to increase the range of the wireless network.

Formulating Problems

- For the extended range to be beneficial, directional antennas must be oriented in a specific angle and direction.
- Therefore, the problem of finding the best orientation is taken into consideration here.

Formulating Problems

- Problem: Find a minimized objective f(X) indicating the location and orientation to receive the best RSSI.
- Subject to:

 $x_{L} \le x \le x_{U}$ $y_{L} \le y \le y_{U}$ $\phi_{L} \le \phi \le \phi_{U}$ $\theta_{L} \le \theta \le \theta_{U}$

 $\mathbf{X} = \begin{bmatrix} \phi \text{ (roll angle of the antenna)} \\ \theta \text{ (pitch angle of the antenna)} \\ x \text{ (position of the robot)} \\ y \text{ (position of the robot)} \\ \psi \text{ (heading angle of the robot)} \end{bmatrix}$

A simplified model for self-configurable wireless networks

COLLEGE OF TECHNOLOGY

Pattern Based Search Algorithm

Experimental Setup

- Can antenna "cantenna", Laptop, Adaptor
- P3AT robot and the Robotis servo motor tracking arm

A configuration of experimental setup and a mobile robot carrying the pan-tilt antenna set

Experimental Setup

• Linux was chosen as the operation system for testing.

```
iwconfig wlan0
wlan0 IEEE 802.11bgn ESSID:" "
Mode:Managed Frequency:2.462 GHz Access Point:
Bit Rate=54 Mb/s Tx-Power=20 dBm
Retry long limit:7 RTS thr:off Fragment thr:off
Encryption key:off
Power Management:on
Link Quality=61/70 Signal level=-49 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0
```

(a) Simple command line operation

iwconfig wlan0 | grep Signal| cut -d '-' -f2 |cut -d ' ' -f1 50

(b) Additional command line parsing a single instruction

Experimental Setup

- S_i , search direction
- a_i , step size
 - [°(degree), °, m(meter), m, °] $\alpha_1 = 22.5$, $\mathbf{S}_1 = [0, 0, 1, 0, 0]^T$

COLLEGE OF TECHNOLOGY

Results (first case)

Robot 2 has a fixed heading angle of 0°

COLLEGE OF TECHNOLOGY

Results (second case)

Radiation Pattern (Second Situation) Robot 2 has a fixed RSSI (dB) 45 80 heading angle of 45° 60 Minimum 30 (5) 48 58 Robot 1 56 15 4 46 R<mark>%</mark>SI (dB) Tilt Angle, 0 (degree) X₀ 54 0 0 52 O $(\mathbf{2})$ 50 -15 48 50 52 54 56 56 46 48 -30 S_Q 48 44 46 6 46 -45--90 42 90 -67.5 -45 -22.5 0 22.5 45 67.5 Pan Angle, ϕ (degree) $\mathbf{X}_{\mathbf{0}} = \begin{bmatrix} & 0^{\circ}, \end{bmatrix}$ 45°] 0°, 0_m, 0_m, Robot 2 $X^* = [-45^\circ],$ 30°, 45°] 0_m, 0_m,

Conclusions and Further Works

- In this paper, we
 - used the pattern based search algorithm to enable a directional antenna to find the best location and orientation to receive the best possible RSSI.
 - built a custom pan-tilt system having 2 DOF with two servomotors. Then, this system was incorporated into a mobile platform having 3 DOF.
- As a result, this objective function was minimized with some iteration to find the best orientation for receiving the best possible RSSI.
- For further works, we will deal with
 - Different initial point, using multiple robots, operation of both transmitter and receiver
 - Different optimization techniques such as Genetic Algorithm (GA) and Downhill Method.

COLLEGE OF TECHNOLOGY

Thank you!

Questions? lewis4@purdue.edu