Wideband capacitive Energy Harvester Based On Mechanical Frequency-Up Conversion

Salar Chamanian University of Tabriz

outline

- Introduction
- Damping mode
- Bistable structure & Snap through
- Frequency up conversion system
- Conclusion
- Future work

introduction

Mobile power:

Wireless sensor network(WSN)

- Body sensor network(BSN) and medical applications
- Structural monitoring ٠
- **Environmental monitoring** ٠
- Military applications ٠
- Other electronics ٠

Inertial generator

sinusoidal force: $F \sin(\omega t)$

 $P_{out} \propto m\omega^3 Y^2$

- \mathcal{M} : mass proof \mathcal{O} : source frequency
- Y : amplitude of vibration source
- $X\,$: oscillation amplitude

Power would be largest when system is close to resonance $\omega = \omega_n$

Maximum flow to electrical domain $\zeta_e = \zeta_m$

 $\succ Z_1$ movement limitation

 $P_{out} \propto m Z_0^2 \omega_n^3$

There is no frequency match problem

 $\succ \zeta = \zeta_e + \zeta_m$ maximum power: larger ζ_e & lower ζ_m

Maximum power delivery to electrical load

Electrostatic transducer

: Electret capacitive convertor

Source frequency

Work in damping mode

Damping mode of capacitive generator

initial displacement is applied

Dynamic equation:

 $m\ddot{z}(t) + d\dot{z}(t) + kz(t) = F_E$ $z(0) = Z_0$

 $\begin{aligned} R\dot{q}_{C1} &= V_{C1}(q_1, z) + V_{Electret} \\ R\dot{q}_{C2} &= V_{C2}(q_2, z) + V_{Electret} \end{aligned}$

Natural frequency	200 Hz	400Hz
Allowable displacement	150 μm	70 µm
Area	9×8 mm ²	7×5mm ²
Ratio of initial displacement	0.8	0.8

electrical damping >> mechanical damping Electrical damping causes most of damping and converts to electrical power

voltage level on external load (resistance load)

Average power in 0.05s (20Hz)

2/22/2012

11

Bistable structure and Snap through

Centrally clamped parallel beam mechanism

There is no stress in initial shape

Frequency up conversion systems

In same occupied area with 20Hz electret generator

Total system is composed of : ≻four 200Hz generators ≻Precurved-beam bistable mechanism

Excepted output

sinusoidal Vibration excitation : with acceleration >3.65m/s² @ 20Hz (the minimum acceleration is determined by the force is needed to snap through happen)

Scaled Expected Output:

Natural Frequency	200Hz	400Hz				
Allowable displacement	150 μm	70 µm				
Number of subsystem	4	8	4 times ac	4 times actuated in one period :		
Number of actuated in 1period	2	2	output po	wer=108 μW		
Ratio of Initial displacement	0.6	0.6				
Sub power(µwatt)	6.28 μW	3.4 μW	System	System with natural frequency of 200Hz		
Total power(µwatt)	50.24 μW	54.4 μW	natural freque			
comparison			Initial displacement	Average to output power(μV		
Output power of 400Hz is more But for 400Hz is complicated			0.65	60		
			0.7	68.4		
			0.75	78.5		

89.5

0.8

Comparison in lower frequency

Assumptions:

we considered acceleration magnitude is relatively constant in lower frequencies

Conclusions

- □ We could propose a frequency up conversion for capacitive generators by using precurved bistable structure.
- □ There is no need to tune the external excitation to resonance frequency to obtain optimum power.
- □ In frequency up conversion system more power can be obtained in wideband frequency.
- □ For low frequency vibration sources, this structure can be used to enhance power density, for example : energy harvesting from body motions which common electrostatic generators need more large volume to adjust with source frequency.

Future works

We must fabricate system and get experimental data and compare with expected characteristics of system.

In order to power load circuits we need to Design power management circuit.

We would design quadrstable mechanism for frequency up conversion to able excite system 4 times in one period of input vibration

Thank You