

Smart Audio Sensor on Anomaly Respiration Detection using FLAC features

Jiaxing YE Computer Science Dept. Univ. of Tsukuba, Japan

Takumi Kobayashi AIST, Japan

Tetsuya Higuchi AIST, Japan Computer Science Dept. University of Tsukuba, Japan

Content overview

 Research background
The proposed approach The FLAC feature extraction method The anomaly detection framework
Experimental validations
The generalized application of proposed scheme
Conclusions

2

The facts of respiration symptoms from World Health Org.(WHO)

- 1. Many kinds of respiration diseases, worldwide spread, e.g. 235million people suffering from asthma.
- 2. Chronic disease or cannot be cured, by well treatment works for higher life quality.
- 3. Early and effect diagnosis is of crucial importance

Res_] man

Haro Errc Tim Computerized Symptom targeting

(neglect) 1g + symptom)

Goal: supporting respiration symptom early diagnosis

IEEE Sensor Application Symposium, Brescia, Italy, Feb. 8th, 2012

Requirements for computerized respiration diagnosis

- 1. Suitable for each individual with variation adaptation
- 2. High detection performance, especially for early diagnosis
- 3. High efficiency for real-time operation and hopefully low cost for wide applications.

Algorithm interpretation:

- 1. Unsupervised manner for different individual
- 2. Online scheme for self-adaptation
- 3. Algorithm effectiveness and efficiency

pre-defined model: respirations

Acoustic signals:

Structured sounds: (30 years more)

Features:

MFCC (Mel-frequency cepstral coefficients) LPC (Linear Predictive Code), Subband Energy ZCR (Zero-Cross Rate), Pitch, Spectrogram...

R

Unstructured sounds: (*new*, 2005 --)

Features: MPEG 7.

Utilizing the new feature for respiration analysis (FLAC) J. Ye el al, "Audio-based Sports Highlight Detection by Fourier Local Auto-Correlations." INTERSPEECH 2010: 2198-2201

The proposed approach The FLAC feature

 \cancel{a} 1. Taking advantage of **complex** spectrogram, not rely on the magnitude only.

 \approx 2. Extracting the time-frequency domain dynamics features for representing unstructured sounds.

IEEE Sensor Application Symposium, Brescia, Italy, Feb. 8th, 2012

Ц

Recent advancements on using phase information de /9 Phase

Rajan, P., S. H. K. Parthasarathi, et al. (2009).Robustness of **Phase based Features** for Speaker Recognition. Proc. INTERSPEECH, 2009.

Longbiao, W., K. Minami, et al. (2010). Speaker identification by **combining MFCC and phase information** in noisy environments. Acoustics Speech and Signal Processing (ICASSP), 2010 IEEEInternational Conference on.

Saratxaga, Ibon / Hernáez, Inma / Odriozola, Igor /Navas, Eva/ Luengo, Iker / Erro, Daniel (2010): "Using harmonic phase information to improve ASR rate", In INTERSPEECH-2010, 1185-1188.

Window Size (ms)

Do magnitude + phase!

10

Source : L.Liu, J.He and G.Palm, "Effects of phae on the perception of intervocalic stop consonants", Speech Communication, Vol.22 No. 4, pp.403-417, Sept. 1997

Image processing on (complex) spectrogram

The proposed approach The anomaly detection framework

Source: Hassani, Hossein (2007): *Singular Spectrum Analysis: Methodology and Comparison*. Journal of Data Science, Vol. 5, No. 2 (01. April 2007): pp. 239-257.

13

The proposed approach The anomaly detection framework

Dataset Introduction: stethoscope recordings at 44.1 kHz with 16bit quantization.

Healthy respiration sounds	Symptom respiration sounds	
	Adventitious symptoms	Breath symptoms
Class1	Fine crackle, Bronchiectasis,	
Normal	Bronchial stenosis, Asthma,	
Symptom respiration sound data	Tracheobronchial stenosis, Pulmonary fibrosis (Interstitial pneumonia), Coarse crackle, Rhonchus Adult respiration distress syndrome (ARDS), Wheeze, Pneumonia, Expectoration Congestive heart failure,	Spontaneous pneumothorax, Retention of pleural effusion Atelectasis, Tracheal stenosis Hemopneumothorax, Enhanced respiration
	Pulmonary edema	Class2
	stethocatharsis sedimentation	Abnormal

Parameter setup

 $f < f_{max}$

Fourier analysis window length $L_{Fourier} = Cycle of respiration$

Modeling normal respirations: Base line wandering effect

IEEE Sensor Application Symposium, Brescia, Italy, Feb. 8th, 2012

Anomaly detection in respiration sound

Generalized application: foreground acoustic event detection

Acoustic environment modeling for acoustic event detection

535

Conclusions

Unsupervised learning for individuals respiration character

Adaptation to the variations in respiration in an online manner

High anomaly respiration detection performance

High efficiency (FFT with Local Auto-correlation)

Thank you very much for your attention !

